Package 'AmoudSurv'

Title: Tractable Parametric Odds-Based Regression Models
Description: Fits tractable fully parametric odds-based regression models for survival data, including proportional odds (PO), accelerated failure time (AFT), accelerated odds (AO), and General Odds (GO) models in overall survival frameworks. Given at least an R function specifying the survivor, hazard rate and cumulative distribution functions, any user-defined parametric distribution can be fitted. We applied and evaluated a minimum of seventeen (17) various baseline distributions that can handle different failure rate shapes for each of the four different proposed odds-based regression models. For more information see Bennet et al., (1983) <doi:10.1002/sim.4780020223>, and Muse et al., (2022) <doi:10.1016/j.aej.2022.01.033>.
Authors: Abdisalam Hassan Muse [aut, cre] , Samuel Mwalili [aut, ctb], Oscar Ngesa [aut, ctb], Christophe Chesneau [aut, ctb]
Maintainer: Abdisalam Hassan Muse <[email protected]>
License: GPL-3
Version: 0.1.0
Built: 2024-11-21 05:36:26 UTC
Source: https://github.com/cran/AmoudSurv

Help Index


Leukemia data set

Description

The alloauto data frame has 101 rows and 3 columns.

Format

This data frame contains the following columns:

  • time: Time to death or relapse, months

  • type :Type of transplant (1=allogeneic, 2=autologous)

  • delta:Leukemia-free survival indicator (0=alive without relapse, 1=dead or relapse)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa,Christophe Chesneau, [email protected]

Source

Klein and Moeschberger (1997) Survival Analysis Techniques for Censored and truncated data, Springer. Kardaun Stat. Nederlandica 37 (1983), 103-126.

Examples

{
data(alloauto)
str(alloauto)
}

Bone Marrow Transplant (bmt) data set

Description

Bone marrow transplant study which is widely used in the hazard-based regression models

Format

There were 46 patients in the allogeneic treatment and 44 patients in the autologous treatment group

  • Time: time to event

  • Status: censor indicator, 0 for censored and 1 for uncensored

  • TRT: 1 for autologous treatment group; 0 for allogeneic treatment group

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau, [email protected]

References

Robertson, V. M., Dickson, L. G., Romond, E. H., & Ash, R. C. (1987). Positive antiglobulin tests due to intravenous immunoglobulin in patients who received bone marrow transplant. Transfusion, 27(1), 28-31.


Gastric data set

Description

The gastric data frame has 90 rows and variables.It is a data set from a clinical trial conducted by the Gastrointestinal Tumor Study Group (GTSG) in 1982. The data set refers to the survival times of patients with locally nonresectable gastric cancer. Patients were either treated with chemotherapy combined with radiation or chemotherapy alone.

Format

This data frame contains the following columns:

  • time: survival times in days

  • trt :treatments (1=chemotherapy + radiation; 0=chemotherapy alone)

  • status:failure indicator (1=failure, 0=otherwise)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa,Christophe Chesneau, [email protected]

Source

Gastrointestinal Tumor Study Group. (1982) A Comparison of Combination Chemotherapy and Combined Modality Therapy for Locally Advanced Gastric Carcinoma. Cancer 49:1771-7.

Examples

{
data(gastric)
str(gastric);head(gastric)
}

Larynx Cancer-Patients data set

Description

Larynx Cancer-Patients data set which is widely used in the survival regression models

Format

The data frame contains 90 rows and 5 columns:

  • time: time to event, in months

  • delta: Censor indicator, 0 alive and 1 for dead

  • stage: Stage of disease (1=stage 1, 2=stage2, 3=stage 3, 4=stage 4)

  • diagyr: Year of diagnosis of larynx cancer

  • age: Age at diagnosis of larynx cancer

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau, [email protected]

References

Klein and Moeschberger (1997) Survival Analysis Techniques for Censored and truncated data, Springer. Kardaun Stat. Nederlandica 37 (1983), 103-126.


Accelerated Failure Time (AFT) Model.

Description

Tractable Parametric accelerated failure time (AFT) model's maximum likelihood estimation, log-likelihood, and information criterion. Baseline hazards: NGLL,GLL,MLL,PGW, GG, EW, MKW, LL, TLL, SLL,CLL,SCLL,ATLL, and ASLL

Usage

MLEAFT(
  init,
  times,
  status,
  n,
  basehaz,
  z,
  method = "BFGS",
  hessian = TRUE,
  conf.int = 0.95,
  maxit = 1000,
  log = FALSE
)

Arguments

init

: initial points for optimisation

times

: survival times

status

: vital status (1 - dead, 0 - alive)

n

: The number of the data set

basehaz

: baseline hazard structure including baseline (New generalized log-logistic accelerated failure time "NGLLAFT" model, generalized log-logisitic accelerated failure time "GLLAFT" model, modified log-logistic accelerated failure time "MLLAFT" model, exponentiated Weibull accelerated failure time "EWAFT" model, power generalized weibull accelerated failure time "PGWAFT" model, generalized gamma accelerated failure time "GGAFT" model, modified kumaraswamy Weibull proportional odds "MKWAFT" model, log-logistic accelerated failure time "LLAFT" model, tangent-log-logistic accelerated failure time "TLLAFT" model, sine-log-logistic accelerated failure time "SLLAFT" model, cosine log-logistic accelerated failure time "CLLAFT" model, secant-log-logistic accelerated failure time "SCLLAFT" model, arcsine-log-logistic accelerated failure time "ASLLAFT" model, arctangent-log-logistic accelerated failure time "ATLLAFT" model, Weibull accelerated failure time "WAFT" model, gamma accelerated failure time "GAFT", and log-normal accelerated failure time "LNAFT")

z

: design matrix for covariates (p x n), p >= 1

method

:"optim" or a method from "nlminb".The methods supported are: BFGS (default), "L-BFGS", "Nelder-Mead", "SANN", "CG", and "Brent".

hessian

:A function to return (as a matrix) the hessian for those methods that can use this information.

conf.int

: confidence level

maxit

:The maximum number of iterations. Defaults to 1000

log

:log scale (TRUE or FALSE)

Value

a list containing the output of the optimisation (OPT) and the log-likelihood function (loglik)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

#Example #1
data(alloauto)
time<-alloauto$time
delta<-alloauto$delta
z<-alloauto$type
MLEAFT(init = c(1.0,0.20,0.05),times = time,status = delta,n=nrow(z),
basehaz = "WAFT",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

#Example #2
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
MLEAFT(init = c(1.0,1.0,0.5),times = time,status = delta,n=nrow(z),
basehaz = "LNAFT",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #3
data("gastric")
time<-gastric$time
delta<-gastric$status
z<-gastric$trt
MLEAFT(init = c(1.0,0.50,0.5),times = time,status = delta,n=nrow(z),
basehaz = "LLAFT",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

#Example #4
data("larynx")
time<-larynx$time
delta<-larynx$delta
larynx$age<-as.numeric(scale(larynx$age))
larynx$diagyr<-as.numeric(scale(larynx$diagyr))
larynx$stage<-as.factor(larynx$stage)
z<-model.matrix(~ stage+age+diagyr, data = larynx)
MLEAFT(init = c(1.0,0.5,0.5,0.5,0.5,0.5,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "LNAFT",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

Accelerated Odds (AO) Model.

Description

A Tractable Parametric Accelerated Odds (AO) model's maximum likelihood estimates,log-likelihood, and Information Criterion values. Baseline hazards: NGLL,GLL,MLL,PGW, GG, EW, MKW, LL, TLL, SLL,CLL,SCLL,ATLL, and ASLL

Usage

MLEAO(
  init,
  times,
  status,
  n,
  basehaz,
  z,
  method = "BFGS",
  hessian = TRUE,
  conf.int = 0.95,
  maxit = 1000,
  log = FALSE
)

Arguments

init

: Initial parameters to maximize the likelihood function;

times

: survival times

status

: vital status (1 - dead, 0 - alive)

n

: The number of the data set

basehaz

: baseline hazard structure including baseline (New generalized log-logistic accelerated odds "NGLLAO" model, generalized log-logisitic accelerated odds "GLLAO" model, modified log-logistic accelerated odds "MLLAO" model,exponentiated Weibull accelerated odds "EWAO" model, power generalized weibull accelerated odds "PGWAO" model, generalized gamma accelerated odds "GGAO" model, modified kumaraswamy Weibull accelerated odds "MKWAO" model, log-logistic accelerated odds "LLAO" model, tangent-log-logistic accelerated odds "TLLAO" model, sine-log-logistic accelerated odds "SLLAO" model, cosine log-logistic accelerated odds "CLLAO" model,secant-log-logistic accelerated odds "SCLLAO" model, arcsine-log-logistic accelerated odds "ASLLAO" model,arctangent-log-logistic accelerated odds "ATLLAO" model, Weibull accelerated odds "WAO" model, gamma accelerated odds "WAO" model, and log-normal accelerated odds "ATLNAO" model.)

z

: design matrix for covariates (p x n), p >= 1

method

:"optim" or a method from "nlminb".The methods supported are: BFGS (default), "L-BFGS", "Nelder-Mead", "SANN", "CG", and "Brent".

hessian

:A function to return (as a matrix) the hessian for those methods that can use this information.

conf.int

: confidence level

maxit

:The maximum number of iterations. Defaults to 1000

log

:log scale (TRUE or FALSE)

Value

a list containing the output of the optimisation (OPT) and the log-likelihood function (loglik)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

#Example #1
data(alloauto)
time<-alloauto$time
delta<-alloauto$delta
z<-alloauto$type
MLEAO(init = c(1.0,0.40,0.50,0.50),times = time,status = delta,n=nrow(z),
basehaz = "GLLAO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #2
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
MLEAO(init = c(1.0,1.0,0.5),times = time,status = delta,n=nrow(z),
basehaz = "CLLAO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

#Example #3
data("gastric")
time<-gastric$time
delta<-gastric$status
z<-gastric$trt
MLEAO(init = c(1.0,1.0,0.5),times = time,status = delta,n=nrow(z),
basehaz = "LNAO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #4
data("larynx")
time<-larynx$time
delta<-larynx$delta
larynx$age<-as.numeric(scale(larynx$age))
larynx$diagyr<-as.numeric(scale(larynx$diagyr))
larynx$stage<-as.factor(larynx$stage)
z<-model.matrix(~ stage+age+diagyr, data = larynx)
MLEAO(init = c(1.0,1.0,0.5,0.5,0.5,0.5,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "ASLLAO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

General Odds (GO) Model.

Description

A Tractable Parametric General Odds (GO) model's Log-likelihood, MLE and information criterion values. Baseline hazards: NGLL,GLL,MLL,PGW, GG, EW, MKW, LL, TLL, SLL,CLL,SCLL,ATLL, and ASLL

Usage

MLEGO(
  init,
  times,
  status,
  n,
  basehaz,
  z,
  zt,
  method = "BFGS",
  hessian = TRUE,
  conf.int = 0.95,
  maxit = 1000,
  log = FALSE
)

Arguments

init

: initial points for optimisation

times

: survival times

status

: vital status (1 - dead, 0 - alive)

n

: The number of the data set

basehaz

: baseline hazard structure including baseline (New generalized log-logistic general odds "NGLLGO" model, generalized log-logisitic general odds "GLLGO" model, modified log-logistic general odds "MLLGO" model,exponentiated Weibull general odds "EWGO" model, power generalized weibull general odds "PGWGO" model, generalized gamma general odds "GGGO" model, modified kumaraswamy Weibull general odds "MKWGO" model, log-logistic general odds "LLGO" model, tangent-log-logistic general odds "TLLGO" model, sine-log-logistic general odds "SLLGO" model, cosine log-logistic general odds "CLLGO" model,secant-log-logistic general odds "SCLLGO" model, arcsine-log-logistic general odds "ASLLGO" model, arctangent-log-logistic general odds "ATLLGO" model, Weibull general odds "WGO" model, gamma general odds "WGO" model, and log-normal general odds "ATLNGO" model.)

z

: design matrix for odds-level effects (p x n), p >= 1

zt

: design matrix for time-dependent effects (q x n), q >= 1

method

:"optim" or a method from "nlminb".The methods supported are: BFGS (default), "L-BFGS", "Nelder-Mead", "SANN", "CG", and "Brent".

hessian

:A function to return (as a matrix) the hessian for those methods that can use this information.

conf.int

: confidence level

maxit

:The maximum number of iterations. Defaults to 1000

log

:log scale (TRUE or FALSE)

Value

a list containing the output of the optimisation (OPT) and the log-likelihood function (loglik)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

#Example #1
data(alloauto)
time<-alloauto$time
delta<-alloauto$delta
z<-alloauto$type
MLEGO(init = c(1.0,0.50,0.50,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "PGWGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #2
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
MLEGO(init = c(1.0,0.50,0.45,0.5),times = time,status = delta,n=nrow(z),
basehaz = "TLLGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

#Example #3
data("gastric")
time<-gastric$time
delta<-gastric$status
z<-gastric$trt
MLEGO(init = c(1.0,1.0,0.50,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "GLLGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

Proportional Odds (PO) model.

Description

Tractable Parametric Proportional Odds (PO) model's maximum likelihood estimation, log-likelihood, and information criterion. Baseline hazards: NGLL,GLL,MLL,PGW, GG, EW, MKW, LL, TLL, SLL,CLL,SCLL,ATLL, and ASLL

Usage

MLEPO(
  init,
  times,
  status,
  n,
  basehaz,
  z,
  method = "BFGS",
  hessian = TRUE,
  conf.int = 0.95,
  maxit = 1000,
  log = FALSE
)

Arguments

init

: initial points for optimisation

times

: survival times

status

: vital status (1 - dead, 0 - alive)

n

: The number of the data set

basehaz

: baseline hazard structure including baseline (New generalized log-logistic proportional odds "NGLLPO" model, generalized log-logisitic proportional odds "GLLPO" model, modified log-logistic proportional odds "MLLPO" model, exponentiated Weibull proportional odds "EWPO" model, power generalized weibull proportional odds "PGWPO" model, generalized gamma proportional odds "GGPO" model, modified kumaraswamy Weibull proportional odds "MKWPO" model, log-logistic proportional odds "PO" model, tangent-log-logistic proportional odds "TLLPO" model, sine-log-logistic proportional odds "SLLPO" model, cosine log-logistic proportional odds "CLLPO" model, secant-log-logistic proportional odds "SCLLPO" model, arcsine-log-logistic proportional odds "ASLLPO" model, and arctangent-log-logistic proportional odds "ATLLPO" model, Weibull proportional odds "WPO" model, gamma proportional odds "GPO" model, and log-normal proportional odds "LNPO" model.)

z

: design matrix for covariates (p x n), p >= 1

method

:"optim" or a method from "nlminb".The methods supported are: BFGS (default), "L-BFGS", "Nelder-Mead", "SANN", "CG", and "Brent".

hessian

:A function to return (as a matrix) the hessian for those methods that can use this information.

conf.int

: confidence level

maxit

:The maximum number of iterations. Defaults to 1000

log

:log scale (TRUE or FALSE)

Value

a list containing the output of the optimisation (OPT) and the log-likelihood function (loglik)

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

#Example #1
data(alloauto)
time<-alloauto$time
delta<-alloauto$delta
z<-alloauto$type
MLEPO(init = c(1.0,0.40,1.0,0.50),times = time,status = delta,n=nrow(z),
basehaz = "GLLPO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #2
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
MLEPO(init = c(1.0,1.0,0.5),times = time,status = delta,n=nrow(z),
basehaz = "SLLPO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

#Example #3
data("gastric")
time<-gastric$time
delta<-gastric$status
z<-gastric$trt
MLEPO(init = c(1.0,0.50,1.0,0.75),times = time,status = delta,n=nrow(z),
basehaz = "PGWPO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)

#Example #4
data("larynx")
time<-larynx$time
delta<-larynx$delta
larynx$age<-as.numeric(scale(larynx$age))
larynx$diagyr<-as.numeric(scale(larynx$diagyr))
larynx$stage<-as.factor(larynx$stage)
z<-model.matrix(~ stage+age+diagyr, data = larynx)
MLEPO(init = c(1.0,1.0,0.5,0.5,0.5,0.5,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "ATLLPO",z = z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)

Arcsine-Log-logistic (ASLL) Cumulative Distribution Function.

Description

Arcsine-Log-logistic (ASLL) Cumulative Distribution Function.

Usage

pASLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the ASLL Cumulative Distribution Function.

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Tung, Y. L., Ahmad, Z., & Mahmoudi, E. (2021). The Arcsine-X Family of Distributions with Applications to Financial Sciences. Comput. Syst. Sci. Eng., 39(3), 351-363.

Examples

t=runif(10,min=0,max=1)
pASLL(t=t, alpha=0.7, beta=0.5)

Arctangent-Log-logistic (ATLL) Cumulative Distribution Function.

Description

Arctangent-Log-logistic (ATLL) Cumulative Distribution Function.

Usage

pATLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the ATLL Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Alkhairy, I., Nagy, M., Muse, A. H., & Hussam, E. (2021). The Arctan-X family of distributions: Properties, simulation, and applications to actuarial sciences. Complexity, 2021.

Examples

t=runif(10,min=0,max=1)
pATLL(t=t, alpha=0.7, beta=0.5)

Cosine-Log-logistic (SLL) Cumulative Distribution Function.

Description

Cosine-Log-logistic (SLL) Cumulative Distribution Function.

Usage

pCLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the CLL Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., Junior, W. R. D. O., de Brito, C. C. R., Ferreira, T. A., & Soares, L. G. (2019). General properties for the Cos-G class of distributions with applications. Eurasian Bulletin of Mathematics (ISSN: 2687-5632), 63-79.

Examples

t=runif(10,min=0,max=1)
pCLL(t=t, alpha=0.7, beta=0.5)

Generalised Gamma (GG) Probability Density Function.

Description

Generalised Gamma (GG) Probability Density Function.

Usage

pdGG(t, kappa, alpha, eta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the GG probability density function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pdGG(t=t, kappa=0.5, alpha=0.35, eta=0.9,log=FALSE)

Exponentiated Weibull (EW) Cumulative Distribution Function.

Description

Exponentiated Weibull (EW) Cumulative Distribution Function.

Usage

pEW(t, lambda, kappa, alpha, log.p = FALSE)

Arguments

t

: positive argument

lambda

: scale parameter

kappa

: shape parameter

alpha

: shape parameter

log.p

:log scale (TRUE or FALSE)

Value

the value of the EW cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pEW(t=t, lambda=0.65,kappa=0.45, alpha=0.25, log.p=FALSE)

Gamma (G) Cumulative Distribution Function.

Description

Gamma (G) Cumulative Distribution Function.

Usage

pG(t, shape, scale)

Arguments

t

: positive argument

shape

: shape parameter

scale

: scale parameter

Value

the value of the G Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pG(t=t, shape=0.85, scale=0.5)

Generalised Gamma (GG) Cumulative Distribution Function.

Description

Generalised Gamma (GG) Cumulative Distribution Function.

Usage

pGG(t, kappa, alpha, eta, log.p = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log.p

:log scale (TRUE or FALSE)

Value

the value of the GG cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pGG(t=t, kappa=0.5, alpha=0.35, eta=0.9,log.p=FALSE)

Generalized Log-logistic (GLL) cumulative distribution function.

Description

Generalized Log-logistic (GLL) cumulative distribution function.

Usage

pGLL(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the GLL cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Muse, A. H., Mwalili, S., Ngesa, O., Almalki, S. J., & Abd-Elmougod, G. A. (2021). Bayesian and classical inference for the generalized log-logistic distribution with applications to survival data. Computational intelligence and neuroscience, 2021.

Examples

t=runif(10,min=0,max=1)
pGLL(t=t, kappa=0.5, alpha=0.35, eta=0.9)

Log-logistic (LL) Cumulative Distribution Function.

Description

Log-logistic (LL) Cumulative Distribution Function.

Usage

pLL(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

Value

the value of the LL cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pLL(t=t, kappa=0.5, alpha=0.35)

Lognormal (LN) Cumulative Distribution Function.

Description

Lognormal (LN) Cumulative Distribution Function.

Usage

pLN(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: meanlog parameter

alpha

: sdlog parameter

Value

the value of the LN cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pLN(t=t, kappa=0.75, alpha=0.95)

Modified Kumaraswamy Weibull (MKW) Cumulative Distribution Function.

Description

Modified Kumaraswamy Weibull (MKW) Cumulative Distribution Function.

Usage

pMKW(t, alpha, kappa, eta)

Arguments

t

: positive argument

alpha

: Inverse scale parameter

kappa

: shape parameter

eta

: shape parameter

Value

the value of the MKW cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pMKW(t=t,alpha=0.35, kappa=0.7, eta=1.4)

Modified Log-logistic (MLL) cumulative distribution function.

Description

Modified Log-logistic (MLL) cumulative distribution function.

Usage

pMLL(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the MLL cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Kayid, M. (2022). Applications of Bladder Cancer Data Using a Modified Log-Logistic Model. Applied Bionics and Biomechanics, 2022.

Examples

t=runif(10,min=0,max=1)
pMLL(t=t, kappa=0.75, alpha=0.5, eta=0.9)

New Generalized Log-logistic (NGLL) cumulative distribution function.

Description

New Generalized Log-logistic (NGLL) cumulative distribution function.

Usage

pNGLL(t, kappa, alpha, eta, zeta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

zeta

: shape parameter

Value

the value of the NGLL cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Hassan Muse, A. A new generalized log-logistic distribution with increasing, decreasing, unimodal and bathtub-shaped hazard rates: properties and applications, in Proceedings of the Symmetry 2021 - The 3rd International Conference on Symmetry, 8–13 August 2021, MDPI: Basel, Switzerland, doi:10.3390/Symmetry2021-10765.

Examples

t=runif(10,min=0,max=1)
pNGLL(t=t, kappa=0.5, alpha=0.35, eta=0.7, zeta=1.4)

Power Generalised Weibull (PGW) cumulative distribution function.

Description

Power Generalised Weibull (PGW) cumulative distribution function.

Usage

pPGW(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the PGW cumulative distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Alvares, D., & Rubio, F. J. (2021). A tractable Bayesian joint model for longitudinal and survival data. Statistics in Medicine, 40(19), 4213-4229.

Examples

t=runif(10,min=0,max=1)
pPGW(t=t, kappa=0.5, alpha=1.5, eta=0.6)

Secant-log-logistic (SCLL) Cumulative Distribution Function.

Description

Secant-log-logistic (SCLL) Cumulative Distribution Function.

Usage

pSCLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the SCLL Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., de Oliveira, W. R., de Brito, C. C. R., Chesneau, C., Fernandes, R., & Ferreira, T. A. (2022). Sec-G class of distributions: Properties and applications. Symmetry, 14(2), 299.

Examples

t=runif(10,min=0,max=1)
pSCLL(t=t, alpha=0.7, beta=0.5)

Sine-Log-logistic (SLL) Cumulative Distribution Function.

Description

Sine-Log-logistic (SLL) Cumulative Distribution Function.

Usage

pSLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the SLL Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., Junior, W., De Brito, C., Chesneau, C., Ferreira, T., & Soares, L. (2019). On the Sin-G class of distributions: theory, model and application. Journal of Mathematical Modeling, 7(3), 357-379.

Examples

t=runif(10,min=0,max=1)
pSLL(t=t, alpha=0.7, beta=0.5)

Tangent-Log-logistic (TLL) Cumulative Distribution Function.

Description

Tangent-Log-logistic (TLL) Cumulative Distribution Function.

Usage

pTLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the TLL Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pTLL(t=t, alpha=0.7, beta=0.5)

Weibull (W) Cumulative Distribution Function.

Description

Weibull (W) Cumulative Distribution Function.

Usage

pW(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

Value

the value of the W Cumulative Distribution function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
pW(t=t, kappa=0.75, alpha=0.5)

Arcsine-Log-logistic (ASLL) Hazard Rate Function.

Description

Arcsine-Log-logistic (ASLL) Hazard Rate Function.

Usage

rASLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the ASLL Hazard Rate Function.

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rSLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Arctangent-Log-logistic (ATLL) Hazard Function.

Description

Arctangent-Log-logistic (ATLL) Hazard Function.

Usage

rATLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the ATLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rATLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Cosine-Log-logistic (CLL) Hazard Function.

Description

Cosine-Log-logistic (CLL) Hazard Function.

Usage

rCLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the CLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., Junior, W. R. D. O., de Brito, C. C. R., Ferreira, T. A., & Soares, L. G. (2019). General properties for the Cos-G class of distributions with applications. Eurasian Bulletin of Mathematics (ISSN: 2687-5632), 63-79.

Examples

t=runif(10,min=0,max=1)
rCLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Exponentiated Weibull (EW) Hazard Function.

Description

Exponentiated Weibull (EW) Hazard Function.

Usage

rEW(t, lambda, kappa, alpha, log = FALSE)

Arguments

t

: positive argument

lambda

: scale parameter

kappa

: shape parameter

alpha

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the EW hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Khan, S. A. (2018). Exponentiated Weibull regression for time-to-event data. Lifetime data analysis, 24(2), 328-354.

Examples

t=runif(10,min=0,max=1)
rEW(t=t, lambda=0.9, kappa=0.5, alpha=0.75, log=FALSE)

Gamma (G) Hazard Function.

Description

Gamma (G) Hazard Function.

Usage

rG(t, shape, scale, log = FALSE)

Arguments

t

: positive argument

shape

: shape parameter

scale

: scale parameter

log

:log scale (TRUE or FALSE)

Value

the value of the G hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rG(t=t, shape=0.5, scale=0.85,log=FALSE)

Generalised Gamma (GG) Hazard Function.

Description

Generalised Gamma (GG) Hazard Function.

Usage

rGG(t, kappa, alpha, eta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the GG hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Agarwal, S. K., & Kalla, S. L. (1996). A generalized gamma distribution and its application in reliabilty. Communications in Statistics-Theory and Methods, 25(1), 201-210.

Examples

t=runif(10,min=0,max=1)
rGG(t=t, kappa=0.5, alpha=0.35, eta=0.9,log=FALSE)

Generalized Log-logistic (GLL) hazard function.

Description

Generalized Log-logistic (GLL) hazard function.

Usage

rGLL(t, kappa, alpha, eta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the GLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Muse, A. H., Mwalili, S., Ngesa, O., Alshanbari, H. M., Khosa, S. K., & Hussam, E. (2022). Bayesian and frequentist approach for the generalized log-logistic accelerated failure time model with applications to larynx-cancer patients. Alexandria Engineering Journal, 61(10), 7953-7978.

Examples

t=runif(10,min=0,max=1)
rGLL(t=t, kappa=0.5, alpha=0.35, eta=0.7, log=FALSE)

Log-logistic (LL) Hazard Function.

Description

Log-logistic (LL) Hazard Function.

Usage

rLL(t, kappa, alpha, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the LL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rLL(t=t, kappa=0.5, alpha=0.35,log=FALSE)

Lognormal (LN) Hazard Function.

Description

Lognormal (LN) Hazard Function.

Usage

rLN(t, kappa, alpha, log = FALSE)

Arguments

t

: positive argument

kappa

: meanlog parameter

alpha

: sdlog parameter

log

:log scale (TRUE or FALSE)

Value

the value of the LN hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rLN(t=t, kappa=0.5, alpha=0.75,log=FALSE)

Modified Kumaraswamy Weibull (MKW) Hazard Function.

Description

Modified Kumaraswamy Weibull (MKW) Hazard Function.

Usage

rMKW(t, alpha, kappa, eta, log = FALSE)

Arguments

t

: positive argument

alpha

: inverse scale parameter

kappa

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the MKW hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Khosa, S. K. (2019). Parametric Proportional Hazard Models with Applications in Survival analysis (Doctoral dissertation, University of Saskatchewan).

Examples

t=runif(10,min=0,max=1)
rMKW(t=t, alpha=0.35, kappa=0.7, eta=1.4, log=FALSE)

Modified Log-logistic (MLL) hazard function.

Description

Modified Log-logistic (MLL) hazard function.

Usage

rMLL(t, kappa, alpha, eta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the MLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rMLL(t=t, kappa=0.75, alpha=0.5, eta=0.9,log=FALSE)

New Generalized Log-logistic (NGLL) hazard function.

Description

New Generalized Log-logistic (NGLL) hazard function.

Usage

rNGLL(t, kappa, alpha, eta, zeta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

zeta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the NGLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rNGLL(t=t, kappa=0.5, alpha=0.35, eta=0.7, zeta=1.4, log=FALSE)

Power Generalised Weibull (PGW) hazard function.

Description

Power Generalised Weibull (PGW) hazard function.

Usage

rPGW(t, kappa, alpha, eta, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the PGW hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rPGW(t=t, kappa=0.5, alpha=1.5, eta=0.6,log=FALSE)

Secant-log-logistic (SCLL) Hazard Function.

Description

Secant-log-logistic (SCLL) Hazard Function.

Usage

rSCLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the SCLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., de Oliveira, W. R., de Brito, C. C. R., Chesneau, C., Fernandes, R., & Ferreira, T. A. (2022). Sec-G class of distributions: Properties and applications. Symmetry, 14(2), 299.

Tung, Y. L., Ahmad, Z., & Mahmoudi, E. (2021). The Arcsine-X Family of Distributions with Applications to Financial Sciences. Comput. Syst. Sci. Eng., 39(3), 351-363.

Examples

t=runif(10,min=0,max=1)
rSCLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Sine-Log-logistic (SLL) Hazard Function.

Description

Sine-Log-logistic (SLL) Hazard Function.

Usage

rSLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the SLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L. (2015). New trigonometric classes of probabilistic distributions. esis, Universidade Federal Rural de Pernambuco, Brazil.

Examples

t=runif(10,min=0,max=1)
rSLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Tangent-Log-logistic (TLL) Hazard Function.

Description

Tangent-Log-logistic (TLL) Hazard Function.

Usage

rTLL(t, alpha, beta, log = FALSE)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the TLL hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Muse, A. H., Tolba, A. H., Fayad, E., Abu Ali, O. A., Nagy, M., & Yusuf, M. (2021). Modelling the COVID-19 mortality rate with a new versatile modification of the log-logistic distribution. Computational Intelligence and Neuroscience, 2021.

Examples

t=runif(10,min=0,max=1)
rTLL(t=t, alpha=0.7, beta=0.5,log=FALSE)

Weibull (W) Hazard Function.

Description

Weibull (W) Hazard Function.

Usage

rW(t, kappa, alpha, log = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

log

:log scale (TRUE or FALSE)

Value

the value of the w hazard function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
rW(t=t, kappa=0.75, alpha=0.5,log=FALSE)

Arcsine-Log-logistic (ASLL) Survival Function.

Description

Arcsine-Log-logistic (ASLL) Survival Function.

Usage

sASLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the ASLL Survival Function.

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Tung, Y. L., Ahmad, Z., & Mahmoudi, E. (2021). The Arcsine-X Family of Distributions with Applications to Financial Sciences. Comput. Syst. Sci. Eng., 39(3), 351-363.

Examples

t=runif(10,min=0,max=1)
sASLL(t=t, alpha=0.7, beta=0.5)

Arctangent-Log-logistic (ATLL) Survivor Function.

Description

Arctangent-Log-logistic (ATLL) Survivor Function.

Usage

sATLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the ATLL Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Alkhairy, I., Nagy, M., Muse, A. H., & Hussam, E. (2021). The Arctan-X family of distributions: Properties, simulation, and applications to actuarial sciences. Complexity, 2021.

Examples

t=runif(10,min=0,max=1)
sATLL(t=t, alpha=0.7, beta=0.5)

Cosine-Log-logistic (CLL) Survivor Function.

Description

Cosine-Log-logistic (CLL) Survivor Function.

Usage

sCLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the CLL Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Mahmood, Z., M Jawa, T., Sayed-Ahmed, N., Khalil, E. M., Muse, A. H., & Tolba, A. H. (2022). An Extended Cosine Generalized Family of Distributions for Reliability Modeling: Characteristics and Applications with Simulation Study. Mathematical Problems in Engineering, 2022.

Examples

t=runif(10,min=0,max=1)
sCLL(t=t, alpha=0.7, beta=0.5)

Exponentiated Weibull (EW) Survivor Function.

Description

Exponentiated Weibull (EW) Survivor Function.

Usage

sEW(t, lambda, kappa, alpha)

Arguments

t

: positive argument

lambda

: scale parameter

kappa

: shape parameter

alpha

: shape parameter

Value

the value of the EW survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Rubio, F. J., Remontet, L., Jewell, N. P., & Belot, A. (2019). On a general structure for hazard-based regression models: an application to population-based cancer research. Statistical methods in medical research, 28(8), 2404-2417.

Examples

t=runif(10,min=0,max=1)
sEW(t=t, lambda=0.9, kappa=0.5, alpha=0.75)

Gamma (G) Survivor Function.

Description

Gamma (G) Survivor Function.

Usage

sG(t, shape, scale)

Arguments

t

: positive argument

shape

: shape parameter

scale

: scale parameter

Value

the value of the G Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sG(t=t, shape=0.85, scale=0.5)

Generalised Gamma (GG) Survival Function.

Description

Generalised Gamma (GG) Survival Function.

Usage

sGG(t, kappa, alpha, eta, log.p = FALSE)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

log.p

:log scale (TRUE or FALSE)

Value

the value of the GG survival function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sGG(t=t, kappa=0.5, alpha=0.35, eta=0.9,log.p=FALSE)

Generalized Log-logistic (GLL) survivor function.

Description

Generalized Log-logistic (GLL) survivor function.

Usage

sGLL(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the GLL survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Muse, A. H., Mwalili, S., Ngesa, O., Alshanbari, H. M., Khosa, S. K., & Hussam, E. (2022). Bayesian and frequentist approach for the generalized log-logistic accelerated failure time model with applications to larynx-cancer patients. Alexandria Engineering Journal, 61(10), 7953-7978.

Examples

t=runif(10,min=0,max=1)
sGLL(t=t, kappa=0.5, alpha=0.35, eta=0.9)

Log-logistic (LL) Survivor Function.

Description

Log-logistic (LL) Survivor Function.

Usage

sLL(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

Value

the value of the LL survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sLL(t=t, kappa=0.5, alpha=0.35)

Lognormal (LN) Survivor Hazard Function.

Description

Lognormal (LN) Survivor Hazard Function.

Usage

sLN(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: meanlog parameter

alpha

: sdlog parameter

Value

the value of the LN Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sLN(t=t, kappa=0.75, alpha=0.95)

Modified Kumaraswamy Weibull (MKW) Survivor Function.

Description

Modified Kumaraswamy Weibull (MKW) Survivor Function.

Usage

sMKW(t, alpha, kappa, eta)

Arguments

t

: positive argument

alpha

: Inverse scale parameter

kappa

: shape parameter

eta

: shape parameter

Value

the value of the MKW survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sMKW(t=t,alpha=0.35, kappa=0.7, eta=1.4)

Modified Log-logistic (MLL) survivor function.

Description

Modified Log-logistic (MLL) survivor function.

Usage

sMLL(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the MLL survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Kayid, M. (2022). Applications of Bladder Cancer Data Using a Modified Log-Logistic Model. Applied Bionics and Biomechanics, 2022.

Examples

t=runif(10,min=0,max=1)
sMLL(t=t, kappa=0.75, alpha=0.5, eta=0.9)

New Generalized Log-logistic (NGLL) survivor function.

Description

New Generalized Log-logistic (NGLL) survivor function.

Usage

SNGLL(t, kappa, alpha, eta, zeta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

zeta

: shape parameter

Value

the value of the NGLL survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Hassan Muse, A. A new generalized log-logistic distribution with increasing, decreasing, unimodal and bathtub-shaped hazard rates: properties and applications, in Proceedings of the Symmetry 2021 - The 3rd International Conference on Symmetry, 8–13 August 2021, MDPI: Basel, Switzerland, doi:10.3390/Symmetry2021-10765.

Examples

t=runif(10,min=0,max=1)
SNGLL(t=t, kappa=0.5, alpha=0.35, eta=0.7, zeta=1.4)

Power Generalised Weibull (PGW) survivor function.

Description

Power Generalised Weibull (PGW) survivor function.

Usage

sPGW(t, kappa, alpha, eta)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

eta

: shape parameter

Value

the value of the PGW survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Alvares, D., & Rubio, F. J. (2021). A tractable Bayesian joint model for longitudinal and survival data. Statistics in Medicine, 40(19), 4213-4229.

Examples

t=runif(10,min=0,max=1)
sPGW(t=t, kappa=0.5, alpha=1.5, eta=0.6)

Secant-log-logistic (SCLL) Survivor Function.

Description

Secant-log-logistic (SCLL) Survivor Function.

Usage

sSCLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the SCLL Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sSCLL(t=t, alpha=0.7, beta=0.5)

Sine-Log-logistic (SLL) Survivor Function.

Description

Sine-Log-logistic (SLL) Survivor Function.

Usage

sSLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the SLL Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

References

Souza, L., Junior, W., De Brito, C., Chesneau, C., Ferreira, T., & Soares, L. (2019). On the Sin-G class of distributions: theory, model and application. Journal of Mathematical Modeling, 7(3), 357-379.

Examples

t=runif(10,min=0,max=1)
sSLL(t=t, alpha=0.7, beta=0.5)

Tangent-Log-logistic (TLL) Survivor Function.

Description

Tangent-Log-logistic (TLL) Survivor Function.

Usage

sTLL(t, alpha, beta)

Arguments

t

: positive argument

alpha

: scale parameter

beta

: shape parameter

Value

the value of the TLL Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sTLL(t=t, alpha=0.7, beta=0.5)

Weibull (W) Survivor Function.

Description

Weibull (W) Survivor Function.

Usage

sW(t, kappa, alpha)

Arguments

t

: positive argument

kappa

: scale parameter

alpha

: shape parameter

Value

the value of the W Survivor function

Author(s)

Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau [email protected]

Examples

t=runif(10,min=0,max=1)
sW(t=t, kappa=0.75, alpha=0.5)